special

Открытие электронов Джозефом Джоном Томсоном

Джозеф Джон Томсон родился в Манчестере. Здесь, в Манчестере, он окончил Оуэнсколледж, а в 1876—1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал выпускные экзамены и начал работать в Кавендишской лаборатории.

Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы.

Томсон был одержим экспериментальной физикой. Одержим в лучшем смысле этого слова. Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона.

С 1884 по 1919 год Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские, ученые.

Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей...

Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо.

В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной. То есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат!

Он мог, безусловно, положить конец всем спорам о природе катодных лучей. Но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.

Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электроннолучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим.

Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом? Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд.

Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов. «После длительного обсуждения экспериментов — пишет в своих воспоминаниях Томпсон, — оказалось, что мне не избежать следующих заключений:

1. Что атомы не неделимы, так как из них могут быть вырваны отрицательно заряженные частицы под действием электрических сил, удара быстро движущихся частиц, ультрафиолетового света или тепла.

2. Что эти частицы все одинаковой массы, несут одинаковый заряд отрицательного электричества, от какого бы рода атомов они ни происходили, и являются компонентами всех атомов.

3. Масса этих частиц меньше, чем одна тысячная массы атома водорода. Я вначале назвал эти частицы корпускулами, но они теперь называются более подходящим именем «электрон».

Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют. Результаты расчетов показали: сомнений нет, неизвестные частицы не что иное, как мельчайшие электрические заряды — неделимые атомы электричества, или электроны.

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, состоялся его доклад. Слушатели были в восторге. Восторг присутствующих объяснялся вовсе не тем, что коллега Дж. Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей.

Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми, частицами без всякого внутреннего строения...

Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул — электронов. Теперь стали видны и дальнейшие, самые необходимые направления будущих поисков.

Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона. Это позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций.

В 1903 году в той же Кавендишской лаборатории у Томсона Г. Вильсон внес важное изменение в метод Томсона. В сосуде, в котором производится быстрое адиабатическое расширение ионизируемого воздуха, помещены пластинки конденсатора, между которыми можно создавать электрическое поле и наблюдать падение облака, как при наличии поля, так и в его отсутствии.

Измерения Вильсона дали значение для заряда электрона как 3,1 умноженную на 10 в минус десятой степени абс.эл. ед. Метод Вильсона был использован многими исследователями, в том числе и студентами Петербургского университета Маликовым и Алексеевым, которые нашли заряд равным 4,5 умноженную на 10 в минус десятой степени абс.эл. ед. Это был наиболее приближающийся к истинному значению результат из всех полученных до того, как Милликен начал с 1909 года измерения с отдельными каплями.

Так был открыт и измерен электрон — универсальная частица атомов, первая из открытых физиками так называемых «элементарных частиц». Это открытие дало возможность физикам, прежде всего, по-новому поставить вопрос об изучении электрических, магнитных и оптических свойств вещества.

Источник информации: Самин Д. К. "Сто великих научных открытий"., М.:"Вече", 2002 г.


Created/Updated: 25.05.2018

';